-16t^2+10t+150=0

Simple and best practice solution for -16t^2+10t+150=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+10t+150=0 equation:



-16t^2+10t+150=0
a = -16; b = 10; c = +150;
Δ = b2-4ac
Δ = 102-4·(-16)·150
Δ = 9700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9700}=\sqrt{100*97}=\sqrt{100}*\sqrt{97}=10\sqrt{97}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{97}}{2*-16}=\frac{-10-10\sqrt{97}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{97}}{2*-16}=\frac{-10+10\sqrt{97}}{-32} $

See similar equations:

| 4+(2d=6+3D-2+9d | | 10=0.75+1.5y | | 1/4(4g+36)=64 | | 10n÷2=160 | | 5(x+1=7x+1 | | X-5,x=25 | | F(x)=(3x^)^+6x^+1 | | ?=4x-6≥6x-20 | | 5x-9=3+3 | | X-(5x4)=20 | | X+2,x=10 | | -6(3-3a)=8(6a+5)32 | | 1.2(1-x)=8.1 | | -9(p)=7(63) | | e+2=4e+10 | | 47x-64=0 | | -9/7=63/p | | 36/6=108/m | | 4(4x-5)=4x-32 | | 3x-1=2(4x-3)-10 | | (x-2)^2+3=12 | | 45=25+10x | | w.2.035=w-8.515 | | 6+3n=1n+5n | | 21x-5=10x+3 | | 20=-5(5x-4) | | 2^(x+1)=39 | | 25=-5(8x-5) | | x^2+(5-3x)^2=16 | | 10y^2+24y+48=0 | | -3x-6=-22 | | (5x-3)/2=0 |

Equations solver categories